Distributionally Robust Reward-Risk Ratio Optimization with Moment Constraints
نویسندگان
چکیده
Reward-risk ratio optimization is an important mathematical approach in finance. We revisit the model by considering a situation where an investor does not have complete information on the distribution of the underlying uncertainty and consequently a robust action is taken to mitigate the risk arising from ambiguity of the true distribution. We consider a distributionally robust reward-risk ratio optimization model varied from ex ante Sharpe ratio where the ambiguity set is constructed through prior moment information and the return function is not necessarily linear. We transform the robust optimization problem into a nonlinear semi-infinite programming problem through standard Lagrange dualization and then use the well known entropic risk measure to construct an approximation of the semi-infinite constraints, we solve the latter by an implicit Dinkelbach method (IDM). Finally, we apply the proposed robust model and numerical scheme to a portfolio optimization problem and report some preliminary numerical test results. The proposed robust formulation and numerical schemes can be easily applied to stochastic fractional programming problems.
منابع مشابه
A Semi-Infinite Programming Approach for Distributionally Robust Reward-Risk Ratio Optimization with Matrix Moments Constraints1
Reward-risk ratio optimization is an important mathematical approach in finance [54]. In this paper, we revisit the model by considering a situation where an investor does not have complete information on the distribution of the underlying uncertainty and consequently a robust action is taken against the risk arising from ambiguity of the true distribution. We propose a distributionally robust ...
متن کاملA Cutting Surface Algorithm for Semi-Infinite Convex Programming with an Application to Moment Robust Optimization
We first present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems, and use it to develop an algorithm for distributionally robust optimization problems in which the uncertainty set consists of probability distributions with given bounds on their moments. The cutting surface algorithm is also applicable to problems with non-differentiable sem...
متن کاملDistributionally Robust Optimization for Sequential Decision Making
The distributionally robust Markov Decision Process approach has been proposed in the literature, where the goal is to seek a distributionally robust policy that achieves the maximal expected total reward under the most adversarial joint distribution of uncertain parameters. In this paper, we study distributionally robust MDP where ambiguity sets for uncertain parameters are of a format that ca...
متن کاملData-Driven Optimization of Reward-Risk Ratio Measures
We investigate a class of distributionally robust optimization problems that have direct applications in finance. They are semi-infinite programming problems with ambiguous expectation constraints in which fractional functions represent reward-risk ratios. We develop a reformulation and algorithmic data-driven framework based on the Wasserstein metric to model ambiguity and to derive probabilis...
متن کاملQuantitative Stability Analysis for Distributionally Robust Optimization with Moment Constraints
In this paper we consider a broad class of distributionally robust optimization (DRO for short) problems where the probability of the underlying random variables depends on the decision variables and the ambiguity set is defined through parametric moment conditions with generic cone constraints. Under some moderate conditions including Slater type conditions of cone constrained moment system an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal on Optimization
دوره 27 شماره
صفحات -
تاریخ انتشار 2017